Tetrahedron Letters No. 13, pp 1155 - 1158, 1977. Pergamon Press. Printed in Great Britain.

A SIMPLE ROUTE TO HEXACYCLO[4.4.0.0^{2,4}.0^{3,10}.0^{5,8}.0^{7,9}] DECANE ("BARETTANE") AND PENTACYCLO[5.2.1.0^{2,6}.0^{3,5}.0^{4,8}] DECANE ("DIHYDROBARETTANE")^[**]

Dieter Bosse and Armin de Meijere^[*] Organisch-Chemisches Institut der Universität, Temmannstrasse 2, D-3400 Göttingen, Germany

(Received in UK 24 January 1977; accepted for publication 21 February 1977)

Our continuing interest^[1] in the photochemical, thermal and metal catalysed rearrangements of $(CH)_{10}$ hydrocarbons^[2] has led us to look for a new and efficient route to barettane (2). Originally this hydrocarbon was obtained in 7% yield by photolysis of triquinacene (1)^[3], which in turn had to be prepared in a six step synthesis with 10% overall yield from Thiele's acid^[4]. We now report a synthetic sequence leading to barettane (2) in only four steps.

The catalytic hydrogenation of barettane (2) to tetracyclo[5.2.1.0^{2,6}.0^{4,8}]decane ("bisnorditwistane") ($\underline{2a}$)^[3] intuitively demonstrates the close relationship between these two carbon skeletons. With a suitable derivative of $\underline{2}$ it should therefore be possible to bring about C-C-bond formation between C-3/C-5 and C-9/C-10. Since the skeleton of $\underline{2a}$ is easily accessible by catalytic hydrogenation of the bishomocubane $\underline{4a}^{[5,6]}$ and bishomocubane derivatives^[6], we attempted to prepare suitable bifunctional derivatives of $\underline{2}$ by hydrogenation of the corresponding bishomocubanes (4). At atmospheric pressure the easily available bishomocubane-6,10-dione monoethyleneketal $(\frac{4}{2})^{[7]}$ took up hydrogen very slowly (10% Pd/C in AcOH), the reaction was incomplete even after a week. With the use of Adam's catalyst, hydrogenation of the strained C-C- σ -bond in $\frac{4}{2}$ was accompanied by reduction of the carbonyl group, but the ketal function remained unchanged even in glacial acetic acid. In methanol with 10% Pd/C at atmospheric pressure $\frac{4}{2}$ was first transformed to the bis-dimethylketal ($\frac{4}{2}$) and then slow hydrogenation to $\frac{3}{2}$ occurred. At higher pressure (40 bar) reduction of the carbonyl group in $\frac{4}{2}$ to a secondary alcohol was the primary reaction. Because of these findings both carbonyl functions in $\frac{4}{2}$ were protected by ketalization with methanol or ethylene glycol. Hydrogenation of the bis-dimethylketal $\frac{4}{2}$ in methanol or the bis-ethyleneketal $\frac{4}{2}$ in ethanol over 10 % palladium on charcoal at 120 bar produced the tetracyclo[5.2.1.0^{2,6}.0^{4,8}]decane-5,10-dione bis-dimethylketal ($\frac{3}{2}$)^[9] or the bis-ethyleneketal $\frac{3}{2}$ (m.p. 87°C)^[9] in quantitative yield.

Deketalization of $\underline{3c}$ was achieved in 76% yield by exposure to a mixture of 10% sulfuric acid and tetrahydrofurane (5:2) for 12 h at room temperature. Recrystallization of the crude product from n-hexane yielded pure tetracyclo-[5.2.1.0^{2,6}. 0^{4,8}]decane-5,10-dione ($\underline{3e}$)^[9] as white needles [m.p. 189°C, ¹H-NMR (100 MHz, CDCl₃): τ = 7.49(m, 6(7)-H); 7.77(m, 1(2,3,8)-H); 8.07 (AB system 3(9)-H)].

The ketals $\underline{3}\underline{c}$ and $\underline{3}\underline{d}$ as well as the diketone $\underline{3}\underline{e}$ could be transformed to the bis-tosylhydrazone $\underline{3}\underline{g}^{[9]}$ (m.p. 142°C). A solution of $\underline{3}\underline{g}$ in dry tetrahydro-

furane was treated with two equivalents of a 15% n-butyllithium solution in n-hexane at 0°C. After evaporation of the solvent the resulting dilithium salt was pyrolisized at 180° C/O.1Torr and a 17% yield of C₁₀ hydrocarbons was obtained. Vapor phase chromatography indicated three components in a ratio of 5:15:80. The main component proved to be the expected double carbene insertion product barettane (2). It was identical with the photoisomerisation product^[3] of 1 as shown by its vpc retention time, melting point and ¹H-NMR spectrum. After vpc purification the two other compounds were identified by their

¹H-NMR spectra as the pentacyclo[5.2.1.0^{2,6}.0^{3,5}.0^{4,8}]decane (dihydrobarettane) ($\underline{6}$)^[9] [rel. yield 15%, ¹H-NMR (100 MHz, CCl₄): $\tau = 7.44(m, 8-H)$; 7.63 (bs, 1(2,6)-H); 8.14 (m, 7-H); 8.26 (dd, 3(5)-H); 8.65 (AB system, 10-H); 8.82 (m, 4(9)-H)] and the tetracyclodecane $\underline{2a}^{[5,6]}$ [rel. yield 5%]. $\underline{6}$ and $\underline{2a}$ apparently arose from the carbene intermediates abstracting hydrogen from solvent molecules, the last traces of which were difficult to remove from the dilithium salt. $\underline{6}$ was prepared independently in 28% yield by pyrolysis (170°C) of the lithium salt obtained from the tosylhydrazone (m.p. 152°C) of tetracyclo[5.2.1.0^{2,6}.0^{4,8}]decane-5-one ($\underline{2f}$)^[10].

Taking into account, that in this synthetic approach barettane $\frac{2}{2}$ is formed by two consecutive carbene insertion steps, each leading to a highly strained bicyclo[2.1.0]pentane unit, the rather low yield (8% isolated) is not too surprising. In spite of this, the new synthesis of $\frac{2}{2}$ is far superior to the photochemical generation from $\frac{1}{2}$, because it can more easily be scaled-up, the separation of the final product mixture is easier and the total yield over four steps is better. Thus 2 is now available in preparative quantities for a more thorough investigation of its physical and chemical properties.

References and Footnotes

- [*] Author to whom correspondence should be addressed.
- [**] This work was supported by the Deutsche Forschungsgemeinschaft (Project Me 405/9) and the Fonds der Chemischen Industrie.
- [1] Paper no.7 in this series, for preceding papers see: a) L.-U.Meyer and
 A.de Meijere, <u>Tetrahedron Lett</u>. <u>1976</u>, 497; b) l.c.[3]; c) A.de Meijere
 and L.-U.Meyer, <u>Tetrahedron Lett</u>. <u>1974</u>, 1849
- [2] Cf. L.T.Scott and M.Jones jr., <u>Chem.Rev.</u> <u>72</u>, 181 (1972); S.Masamune and N.Darby, <u>Acc.Chem.Res</u>. <u>5</u>, 272 (1972)
- [3] D.Bosse and A.de Meijere, <u>Angew.Chem.</u> <u>86</u>, 706 (1974); <u>Angew.Chem.Int.</u> <u>Ed.Engl.</u> <u>13</u>, 663 (1974)
- [4] C.Mercier, P.Soucy, W.Rosen and P.Deslongchamps, <u>Synth.Commun</u>. <u>3</u>, 161 (1973)
- [5] J.E.Baldwin, University of Oregon, Eugene, Oregon, personal communication
- [6] Cf. K.I.Hirao, T.Iwakuma, M.Taniguchi, E.Abe, O.Yonemitsu, T.Date and K.Kotera, J.C.S. Chem.Comm. <u>1974</u>, 691
- [7] E.Vogel and E.G.Wyes, <u>Chem.Ber</u>. <u>98</u>, 3680 (1965)
- [8] Cf. N.B.Chapman, J.M.Key and K.J.Toyne, <u>J.Org.Chem</u>. <u>35</u>, 3860 (1970)
- [9] Correct molecular weights as determined by mass spectrometry and/or satisfactory elemental analysis data were obtained for all new compounds.
- [10] Cf. R.R.Sauers and T.R.Henderson, <u>J.Org.Chem</u>. <u>39</u>, 1850 (1974)